Pada zaman ini, angka merupakan suatu hal yang sangat
penting bagi kehidupan manusia. Contohnya, tanggal pada kalender, nilai nominal pada uang, dan banyak lagi.Bisakah anda bayangkan bagaimana dunia bila tidak ada
angka? Pasti segala sesuatu akan menjadi
sangat berantakan dan tidak teratur.
Tapi, bagaimanakah sebenarnya sejarah munculnya angka tersebut? Apakahsebenarnya yang disebut angka atau bilangan? Siapa saja
tokoh-tokoh dalam sejarah yang berpengaruh
dalam ilmu matematika?
Bilangan dan angka
Dalam penggunaan sehari-hari, angka dan bilangan seringkali dianggap sebagai dua hal yang sama. Sebenarnya, angka dan bilangan mempunyai pengertian yang berbeda. Bilangan adalah suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Sedangkan angka adalah suatu simbol
atau lambang yang digunakan untuk mewakili satu bilangan. Contohnya, bilangan lima dapat dilambangkan dengan angka 5 maupun menggunakan angka romawi V. Lambang ”5” dan ”V” yang digunakan untuk melambangkan bilangan lima disebut
sebagai angka. Jadi, sebenarnya benda apakah yang biasa kita sebut dengan bilangan itu?
Setiap bilangan, misalnya bilangan yang kita lambangkan
dengan angka 1, sesungguhnya adalah konsep abstrak yang tidak bisa
tertangkap oleh indra manusia, tetapi bersifat universal. Misalnya, tulisan atau
ketikan 1. Yang anda liat di kertas dan sedang anda baca saat ini bukanlah bilangan 1, melainkan hanya
lambang
dari bilangan satu yang
tertangkap oleh indera penglihatan anda berkat adanya pantulan cahaya dari kertas ke mata anda. Demikian pula bila anda
melihat lambang yang sama di papan tulis, yang anda lihat bukanlah
bilangan 1, melainkan tinta dari spidol yang membentuk lambang dari bilangan 1. Dalam matematika, konsep bilangan selama
bertahun-tahun
telah diperluas untuk
meliputi bilangan nol, bilangan asli, bilangan bulat, bilangan rasional, bilangan irasional,
dan lain-lain.
Bilangan asli merupakan salah satu konsepmatematika yang paling sederhana dan termasuk konsep pertama yang bisa dipelajari dan dimengerti oleh
manusia, bahkan beberapa penelitian menunjukkan beberapa jenis kera besar juga bisa menggunakannya. Bilangan asli terdiridari bilangan bulat positif yang bukan nol (1, 2,
3, 4,....). Wajar bila jenis pertama dari bilangan yang digunakan untuk menghitung ini tidak menggunakan nol. Karena sebenarnya dalam kehidupan sehari-hari kita tidak membutuhkan bilangan nol. Seperti dalam menghitung apel pada gambar di bawah, kita tidak menghitungnyadengan cara menghitung dari nol (nol
apel, satu apel, dua apel, ....) melainkan dengan menghitung dari satu. Atau saat ditanya berapa apel yang kamu punya, kita akan lebih cenderung menjawab tidak punya apel ketimbangmenjawab
saya punya nol apel.
Perkembangan angka dan angka dari berbagi
tempat
Kemungkinan
terbesar manusia mulai menghitung adalah setelah bahasa berkembang. Saat itu jari-jari tangan merupakan alat hitung yang paling alami. Itulah sebabnya
mengapa sistem perhitungan yang kita gunakan
saat ini menggunakan bilangan berbasis 10. Untuk mencari bukti sejarah, ukiran pada batu atau kayu adalah
solusi yang paling alami. Dari bukti sejarah,
sistem hitung yang paling awal terdiri dari simbol berulang yang
masing-masing terdiri dari sepuluh, yang diikuti oleh pengulangan simbol untuk
satu. Untuk contoh pada angka-angka yang digunakan saat ini seperti 1
sampai 10, kemudian 11 (simbol bilangan satu diulang pada simbol bilangan
sebelas sebagai penanda 11 adalah 10 + 1). Atau pada bilangan romawi, bilangan
dua puluh satu dilambangkan menjadi XXI (simbol angka sepuluh diulang kemudian
dimulai lagi dari satu sebagai penanda 20 adalah 10 + 10 +1)
Angka Mesir (3000-1600
SM)
Di Mesir, sejak sekitar 3000 tahun sebelum masehi, bukti
sejarah yang ditemukan menyebutkan
bahwa satu disimbolkan sebagai garis vertikal, sedangkan 10 diwakilkan
oleh lambang ^. Orang mesir menulis
dari kanan ke kiri, jadi bilangan dua puluh tiga disimbolkan menjadi |||^^.
Bila anda sulit mengartikannya menjadi 23, bandingkanlah dengan angka romawi XXIII. Angka romawi tersebut pada dasarnya adalah sistem Mesir,
diadaptasi oleh Roma dan sampai sekarang masih kita gunakan setelah kemunculan pertamanya yaitu lebihdari 5000 tahun yang lalu.
Angka Babylonia (1750
SM)
Orang-orang
Babylonia , menggunakan sistem bilangan
berbasis 60. Sistem ini benar- benar sulit digunakan, karena secara logika seharusnya membutuhkan 59 simbol yang berbeda (sama seperti sistem desimal berbasis 10 saat inimempunyai simbol yang berbeda sampai 9). Sebaliknya, angka di bawah 60 dilambangkan dengan kelompok-kelompok sepuluh.
Angka
Babylonia
Yang menyebabkan bentuk tertulisnya sangan aneh jika dibandingkan dengan composisi aritmatika
manapun.
Melalui keunggulan orang Babylonia pada bidang astronomi, sistem perhitungan berbasis 60 mereka masih ada sampai sekarang pada
60 detik dalam satu menit, dan pada pengukuran sudut, 180 derajat pada
jumlah sudut segitiga dan 360 derajat pada sudut satu lingkaran. Dan jauh setelah itu, saat waktu bisa diukur
dengan akurat, sistem yang sama jugadigunakan dalam 60 menit dalam 1 jam.
Orang Babylonia mengambil langkah krusial menuju suatu sistem perhitungan yang lebih efektif. Mereka memperkenalkan konsep nilai tempat, yaitu angka yang sama bisa mempunyai nilai yang berbeda tergantung letak angka pada
urutan. Untuk lebih jelas, kita ambil contoh angka 222. Pada angka tersebut
terdapat tiga angka 2 yang mempunyai nilai yang berbeda-beda, yaitu 200, 20, dan 2. Tapi konsep ini baru dan merupakan
langkah yang sangat berani bagi orang Babylonia .
Untuk mereka, dengan sistem perhitungan berbasis 60, sistem nilai tempat lebih sulit untuk digunakan. Untuk mereka angka
simpel seperti 222 mempunyai nilai 7322 bila menggunakan sistem hitung berbasis
10 yang kita gunakan (2 x60 kuadrat + 2 x 60 + 2)
Sistem
nilai tempat membutuhkan suatu tanda yang bermakna ”kosong”, untuk saat-saat
dimana jumlah nilai pada satu kolom sama dengan kelipatan 60. Dari sinilah awal
mula angka 0. Meskipun bilangan nol itu
sendiri belum ada, dan angka 0 tidak mempunyai nilai numerik tersendiri.
Angka Suku Maya
Suku maya, sama seperti suku Aztec, menggunakan sistem bilangan berbasis
20.Seperti orang Babylonia,
suku Maya menggunakan sistem nilai tempat, dan tentu saja, angka nol. Mereka menggunakan 3 set grafik notasi
yang berbeda untuk mewakili angka:
a) Dengan titik dan garis,
b) Dengan figur antropomorfik, dan
c)
dengan simbol.
Angka suku Maya
Figur di atas melambangkan angka 0-10 untuk suku Maya
Angka Romawi 300 SM
Angka
romawi menggunakan sistem bilangan berbasis 5. Angka I dan V dalam angkaromawi
terinspirasi dari bentuk tangan, yang merupakan alat hitung alami. Sedangkan
angka X/ lambang dari 10, adalah
gabungan dua garis miring yang melambangkan 5. Dan L, C, D,dan M, yang secara urut mewakili 50, 100, 500, dan 1.000,
merupakan modifikasi dari simbol Vdan X
Garis yang miring mewakili jempol, yang kemudian menjadi simbol limaX(10)
adalah gabungan dua garis miring
Symbol L, C, D, & M merupakanmmodifikasi dari simbol V & X
Untuk menulis angka, orang Romawimenggunakan sistem penjumlahan : V + I = VI (6) atau C + X + X + I = CXXI (121),
dan sistem pengurangan
: IX (I sebelum X =9) atau XCIV (Xsebelum
C = 90, I sebelum V = 4)
Nol, Sistem Desimal ,
dan Angka Hindu-Arab (300 SM – sekarang)
Pada
sistem perhitungan Babylonia dan Maya,
bentuk angka tertulisnya masih sangan
rumit untuk perhitungan aritmatika yang efisien. Selain itu, angka nol
belum berfungsi penuh.
Agar angka nol bisa memenuhi potensinya dalam matematika,
setiap bilangan harus mempunyai simbol sendiri atau paling tidak angka-angka dasar dalam basis hitungan mempunyai simbol sendiri. Sistem ini kemungkinan muncul
pertama kali di India .
Angka-angka yang dipakai saat
ini mengalami perubahan-perubahan bertahap sejak 3 abad sebelum masehi.
Sekitar
dua abad kemudian angka India
masuk ke Eropa dalam manuskrip Arab, dan dikenal dengan nama angka Hindu-Arab.
Dan angka Arab sifr berubah
menjadi ”zero” dalam bahasa Eropa
modern, atau dalam bahasa Indonesia ,
”nol”. Tetapi masih perlu berabad-abadlagi sebelum ke-sepuluh angka Hindu-Arab
secara bertahap menggantikan angka romawi di Eropa, yang diwarisi dari masa
kekaisaran Roma.
Tokoh-tokoh matematika
Leonardo Pisano/Fibonacci (1170-1250)
Lenardo Pisano Bogolo, juga
dikenal dengan nama Leonardo of Pisa, Leonardo Pisano , Leonardo Bonacci, atau yang paling sering disebut dengan nama
Fibonacci, adalah seorang ahli matematika dari Itali. Beberapaorang menyebutnya “ahli matematika dari barat yang paling berbakat pada abad pertengahan”.
Fibonacci dikenal oleh dunia karena menyebarkan sistem perhitungan Hindu-Arab di Eropa. Terutama melalui publikasi bukunya pada awal abad ke 13 yaitu Book of Calculation atau
Liber Abaci.
Lahir sekitar tahun 1170, anak dari Guglielmo Fibonacci,
seorang pedagang kaya italia. Guglielmo memimpin sebuah pos perdagangan (beberapa catatan menyebutkan ia adalah konsultan untuk Pisa ) di Bugia,sebuah pelabuhan di sebelah timur Algiers Muwahidun
kesultanan dinasti diAfrika Utara (sekarang
Bejaia, Aljazair). Sebagai anak muda, Leonardo berpergian dengan ayahnya
untuk membantu ayahnya, disanalah dia belajar tentang sistem perhitungan Hindu-Arab.
Menyadari bahwa berhitung dengan angka Hindu-Arab lebih
sederhana dan lebih efisien dibandingkan dengan angka Romawi, Fibonacci menjelajahi seluruh dunia Mediterania untuk belajar di bawah pengawasan matematikawan Arab terkemuka saat itu.
Leonardo kembali dari perjalanannya sekitar 1200. Pada 1202, saat ia berusia 32
tahun, ia menuangkan semua yang ia pelajari kedalam buku Liber Abaci (Kitab Abacus atau Book of Calculatiaon), dan dengan demikian memperkenalkan
angka-angka Hindu-Arab ke Eropa
Al-khawarizmi
Nama Asli dari al-Khawarizmi ialah Muhammad Ibn Musa al-Khawarizmi. Selain itu beliau dikenali sebagai Abu Abdullah Muhammad bin Ahmad bin Yusoff.
Al-Khawarizmi dikenal di Barat sebagai Al-Khawarizmi, Al-Cowarizmi, Al-Ahawizmi, Al-Karismi, Al-Goritmi, Al-Gorismi dan beberapa cara ejaan lagi.
Beliau
dilahirkan di Bukhara. Tahun 780-850M adalah zaman kegemilangan Al-Khawarizmi. Al-Khawarizmi telah wafat antara tahun 220 dan 230M. Ada
yang mengatakan Al-Khawarizmi hidup sekitar awal pertengahan abad ke-9M.
Dalam pendidikan telah dibuktikan bahwa Al-Khawarizmi adalah
seorang tokoh Islam
yang berpengetahuan luas. Pengetahuan dan keahliannya bukan hanya dalam bidang syariat tapi di dalam bidang falsafah, logika,
aritmatika, geometri, musik, ilmu hitung, sejarah Islam dan kimia.
Beliau telah menciptakan pemakaian Sinus dan Tangen dalam penyelidikan trigonometri dan astronomi. Dalam usia muda beliau bekerja di bawah pemerintahan Khalifah al-Ma’mun, bekerja di Bayt al-Hikmah di Baghdad .
Beliau bekerja dalam sebuah observatory yaitu tempat belajar matematika dan astronomi. Al-Khawarizmi
juga dipercaya untuk memimpin perpustakaan khalifah. Beliau pernah
memperkenalkan angka-angka India dan
cara-cara perhitungan India
pada dunia Islam. Beliau juga merupakan seorang penulis Ensiklopedia dalam berbagai
disiplin. Al-Khawarizmi adalah seorang tokoh yang pertama kali memperkenalkan
aljabar dan hisab (ilmu hitung Islam). Banyak lagi ilmu pengetahuan yang
beliau pelajari dalam bidang matematika dan menghasilkan konsep-konsep
matematika yang begitu populer yang masih digunakan sampai sekarang.
Kepribadian al-Khawarizmi telah diakui oleh orang Islam
maupun dunia Barat. Inidapat
dibuktikan bahwa G.Sarton mengatakan bahwa “pencapaian-pencapaian yang
tertinggi telah diperoleh oleh orang-orang Timur….” Dalam hal ini Al-Khawarizmi. Tokoh lain,Wiedmann
berkata…." Al-Khawarizmi mempunyai kepribadian yang teguh dan seorang yang mengabdikan hidupnya untuk dunia sains".
Beberapa cabang ilmu dalam Matematika yangdiperkenalkan oleh
Al-Khawarizmi seperti: geometri, aljabar, aritmatika dan lain-lain.
Pythagoras
Pythagoras of Samos adalah seorang filsuf YunaniIonia dan pendiri gerakan keagamaan disebut Pythagoreanism. Sebagian besar informasi tentang Pythagoras ditulis berabad-abad setelah ia hidup, dan sedikitnya informasi yang dapat dipercaya sehingga sangat sedikit yang diketahui
tentang dia.
Ia lahir di pulau Samos, dan mungkin bepergian secara luas di masa
mudanya, mengunjungi Mesir dan tempat-tempat lain untuk mencari pengetahuan. Sekitar 530 SM, ia pindah ke Croton,
sebuah koloni Yunani di Italia selatan, disana dia mendirikan sebuah sekte
keagamaan. pengikut-nya mengejar ritual keagamaan dan praktek yang
dikembangkan oleh Pythagoras, dan mempelajari teori filosofisnya.
Masyarakat mengambil peran aktif dalam politik Croton, tapi ini akhirnya menyebabkan kejatuhan mereka. Tempat pertemuan Pythagoras dibakar, dan Pythagoras terpaksa melarikan diri. Dia dikatakan telah mengakhiri hari-harinya di Metapontum. Pythagoras memberikan kontribusi berpengaruh terhadap filsafat dan ajarankeagamaan
pada akhir abad ke-6 SM. Ia sering dipuja sebagai matematikawan besar,
mistik dan ilmuwan, dan dia terkenal karena teorema Pythagoras yang
diambil dari namanya.
Kesimpulan
Angka adalah suatu hal
yang sangat penting dalam kehidupan, dan orang-orang padazaman dahulu sangat menyadarinya. Karena itu mereka membuat beraneka ragam sistem hitung untuk mempermudah hidup mereka. Tugas kita sebagai
generasi penerus adalah terus mengembangkan ilmu-ilmu tentang sistem perhitungan
untuk mempermudah kehidupan kita, dan anak-cucu kita.
sumber : http://www.scribd.com